
Krish (products.snowpal.com) (00:01.162)

Hey there, hope you are doing well. In this video we are going to take a look at a feature, one 
feature, it's called relations.


And we're gonna I'm gonna show you a little bit of what that featured the actual functionality as 
we've implemented it on our Project Management platform we have it on the web and mobile 
apps. We're just going to take web app as an example But that's just one part of it what I want 
I would like for you to also understand if you're watching this or listening to it It's better to 
watch this video even though you can listen to it as audio as well I'm gonna because we're 
gonna do a screen share and actually show you a few things


is as a creator of applications, how this functionality, a singular functionality, which is 
handpicking one of our many features, a random one, to be honest. Just to show you how 
leveraging our API, and integrating slash integrating API, is gonna save you, your dev team, a 
ton of time as a company, a lot of money, and eliminate or at least mitigate a lot of your risks.


Instead of rebuilding or reinventing the wheel, should always leverage stable, scalable, 
extensible APIs that are out there. I don't know how many else that are out there. We are 
certainly there, Snowpal APIs. So today's feature is called Relations. Let me give you a quick 
introduction to the feature and then we look at it and then also kind of see how the API 
integration can work in this scenario.


Relations is, we call it relations. What it does really is, you have disparate pieces of content that 
you're creating. It's not very about what the content is, but it's some content. And we're gonna 
take some examples, which is gonna manufacture an example so we understand this. After I 
do a screen share, just a moment.


Krish (products.snowpal.com) (01:51.062)

When you want to connect disparate resources and want to be able to navigate and maneuver 
to them quickly, you can actually leverage the power of this piece of functionality that we call 
relations. Essentially you're relating disparate pieces of content. I call it disparate, but they 
could have something, you know, it is disparate from a content creation, content management 
standpoint, but they could mean something collectively for you. And if that's abstract, that's all 
right, because I did not,


it does sound abstract when I tell you that but when you see it in the moment it's going to 
clarify. Remember this before I do a screenshot that you're connecting content so it's easy for 
your users to navigate and go from one place to the other and I called it intentionally as 
disparate content because they may not have anything else to do with each other meaningfully 
other than the fact that the user is potentially working on three different items and they want to 
be able to quickly sort of maneuver and get


to the other. But that said, let me do a screen share. I'm going to share a window that


Our production system is on snowpal.com, the production web application. We have many 
products, it's one of our product. I'm just gonna, typically during these recordings, I use 
localhost, simply because it's just test data, and I don't wanna pollute our production data. 
Plus, if I log in as myself to our production accounts, it's got sensitive data, obviously, that I'm 
unable to share, as you can imagine. But again, when you're checking this out, just go to 
snowpal.com, and you'll see the exact same thing that I'm showing you here.


here. Let's go pick one of the, you know, I created some content, you know, it's a dev content. 
This is what key called courses. And there's a couple of blocks called math 101 and science 



101 completely manufactured dev data, as you can tell. Let's add one more block here. Let's 
call it, I don't know piano.


Krish (products.snowpal.com) (03:51.01)

And maybe I'm just gonna add description saying start learning


learn how to play a piano.


Krish (products.snowpal.com) (04:10.642)

Okay, that's good enough. So I'm gonna go here. We had two blocks already. We had a third 
block called piano one. I mean, maybe even we can change this to one or two or something 
here. Now, let's say I'm gonna sign up for piano lessons as a user. I also have my math 
lessons, and maybe we can rename this to course tutoring or something like that. Let's say I'm 
just, I don't know,


manufacturing these words here.


I'm not teaching but I'm perhaps learning or maybe I'm a teacher who's teaching this. Yeah, it's 
in a teacher key. This is one of the type of keys that we actually support to have functionality 
that's specific to the world of education, so to speak. So let's say I'm a teacher, I'm teaching 
three different courses, math, science and piano. Now in the real world, perhaps it's unlikely 
that the same person is teaching three different courses but it's all right. I mean, I can imagine 
a teacher who knows that and also plays an instrument.


So I'm going to set up my courses. I have to go here. I have to create assignments and quizzes 
and whatnot. I'm trying to structure my content as a teacher. Let me make sure I'm still 
recording. Yep.


As I do this, I want to be able to get from one place to another quickly. Now, again, math and 
science, I have a different set of students. Probably there's no overlap. So they are disparate 
as we use that language earlier, disparate pieces of content. But now as a teacher who's 
starting the semester, I might say, hey, you know, I'm going to be teaching three different 
courses or tutoring three different courses. Course tutoring probably is better language, not 
courses tutoring. Not that it matters for what I'm going to say here, but it's just noticed. And it 
seems.


Krish (products.snowpal.com) (05:55.504)

bother me, okay. Let me go back here. So I'm gonna be like, okay, I'm gonna spend the next 
day or so trying to structure this content, add assignments, create my handouts and all that 
kind of stuff. So I'm gonna be working on them together at the same time more or less. I wanna 
actually, when I'm here, I wanna be able to get to the other two courses. Now you could say 
that this happens to be in the same sort of structure, so maybe that level of navigation and 
maneuverability is perhaps useful but not absolutely necessary.


because it's still easy enough to get from one to the other by coming here. So I'm gonna make 
this a little bit more, let me create another teacher key called music tutoring. Let me go into 
course tutoring. We actually wanna move this. Let's move piano from where it is right now to 
actually music. We move it there.


So we have two different keys here, course and music tutoring. And then under music, perhaps 
let's add one more. Guitar 30.


Forward is an advanced guitar class that I'm teaching. Okay, now if I go to the main page, the 
key listing page, and then if I go to course shooting, I'm like, okay, let me connect Math 101. 



Let me go to Math 101. I'm gonna hit relation here. I'm gonna say, it's already connected to 
signs, as you can see, but I also want to connect it to guitar.


and maybe also want to connect it to piano because I'm going to be working on these three at 
the same time. So I did that. Now I come back the next day, I log out, I come back and I go to 
music tutoring, I go to blocks, I go to piano 102 and I'm like, okay, I'm making some changes, 
blah, blah. Maybe add a comment here.


Krish (products.snowpal.com) (07:58.158)

to add a collaborator or something of that nature.


Okay, and then I'm like, okay, now I wanna be able to go to the other courses that I'm currently 
working on. I go to Relations here. I see that Math 101 is actually connected to Piano 101. So I 
can go navigate and find myself there. So essentially, I was here, hang on. Yep, I was here. So 
let me, this takes me to the system keys. So if I go back, and I go to Math.


and I go to relations. So math is connected to science, guitar and piano. So the relationship is 
bi-directional. If A is connected to B, then B is connected to A, but each of them can be 
connected to their own set of resources. So I actually, while I was writing explanations, I forgot 
what exact relationship we created here. So let me go to science and I'm gonna add guitar. 
Okay. Now I'm gonna go back here, go to guitar.


Now if I go to guitar and then I click relations, I find science and math. Now I can underlay it 
because guitar has nothing to do with math, I'm gonna underlay it. So that connection has 
been removed. So this is literally for navigational purposes and we apply the same thing to our 
mobile apps as well. So obviously when you connect to resources and relate them here, they 
are related on all clients obviously. This is an example of a piece of functionality. We've used it 
in a certain way


Now you could take the same piece of functionality and let's go to one of our APIs. Let's go to 
building blocks. And then let's say go to blocks.


Krish (products.snowpal.com) (09:42.126)

I'm trying to see whether we have relations categorized, oh, we do have it here. So you go to 
relations in this collection, and then you go look to see get relations for a key, get relations for a 
block, relate a key to a key, unrelate a block from a key. So you have all of these permutations 
and combinations. Now we have three pieces of content, three levels in our content hierarchy 
by default. You can make it infinite when you use our APIs, our web implementation keeps it at 
three levels.


blocks and pods. Now you can relate a key to a block, block to a pod, and in all directions. 
That's what this, the list of endpoints that we're looking at here, that is what they let you do. 
Now you could take this endpoint and implement something quite different from the way we've 
shown here. You could take relations and, you know, depending on your use case, whether 
you're building software for the fintech industry or for the pharmaceutical industry or for, I don't 
know, the education industry or some other industry,


you could actually take this and see what you want to be able to connect or relate and then 
use it that way. You might expose this obviously not as relations as something else entirely to 
the end user but your backend team or the team the frontend team that's leveraging our APIs 
you actually don't even need a backend if you use our APIs. They are going to call this 
endpoint and they're going to say slash pods id relations something. That's just our language, 
our verbiage, our




makes the most sense to you. You just call this and when you expose this to your end users, 
whether you're building b2b or b2c apps mobile or web or microservices, you'll consume that 
and create your own functionality. Now imagine if you had to implement the APIs for relations 
to relate, unrelate, to search the whole nine yards. It's going to take you a whole lot longer than 
just to build a UI. The UI as you can tell here it's quite we've kept it as simple as possible.


but it achieves the purpose that we want for it to achieve. The API on the other side, the 
endpoints is a large number of them because nothing is easy. Yet, given the fact that we at 
Snowpal do full stack polyglot development, it's our opinion that building server scalable, 
extensible, robust server-side implementation is harder than building clients, simply native like 
web apps, the web or the mobile interfaces, because of the number of things


Krish (products.snowpal.com) (12:11.792)

actually worry in terms of integrations, validations, data, not just data integrity, but just the 
integrity of the system as such, security, everything else you have to generally worry and also 
making it very generic and fundamental so different businesses can create different solutions 
using the same set of APIs and endpoints. So implementing these endpoints, that they run into 
a number of them, there's a large number of these endpoints. I'm just scratching the surface 
here when it comes to relations.


is gonna be time that you save by not implementing these API on the end endpoints and by 
simply leveraging it. I'm not gonna show you the mobile version of it because it's just our 
mobile app that also supports rich project management functionality and one of the features is 
relations. But the idea here is to just show you how you could actually use relations. Take our 
production implementation as an example.


and then implement map it to your requirements. Just leverage, do the integration, purchase 
the API key and then connect to our systems in like 15 minutes and your UI team can start 
developing. Or if you wanna provision it in your own infrastructure, we are happy to do that. 
There's like five different ways you can license the APIs. Ultimately, it saves you time, money 
and effort and risk, reduces risk, eliminates it,


happy and I'm sure you're going to be happy as well. Thank you.



